Google has been working on AutoML (automatic machine learning system), a smart machine learning system that can be mutated into a next-generation AI. This new system has been enhanced through the addition of the Darwinian evolution concept that allows building of AI products that can improve themselves. The product of this improvement is called AutoML-Zero. While this system can be worrying to many, if used well, it can open doors for the development of much smarter systems that can mimic human brains in development and decision making through enhanced evolution.
Going back to Charles Darwin’s concept of evolution, slight or random changes in the genetic makeup in an organism are either advantageous or disadvantageous. If the mutation allows the organism to survive and reproduce, the characteristics are then inherited by the future generation. Otherwise, the mutation dies with the organism. In AI, this phenomenon is known as neuro-evolution. It is a process in that neural networks recreates that built parts of the brain to allow only the strong or smart to survive.
An AutoML system makes it easier for applications to use machine learning and other automated features, unlike AutoML-Zero, that requires human input. It uses a three-step process that is setup, predict and learn to improve itself. The system begins with a selection of 100 algorithms by analysis of their mathematical operations. It then identifies the best of these algorithms through a trial-and-error approach. The best ones are retained and tweaked for the next round of trial-and-error while those found to be less effective are dropped. This is basically a mutation of neural networks. The process goes on and on until the neural network is highly efficient.
The new code is more effective and can efficiently identify things that have always been hard for AI to differentiate, such as the difference between objects. These best performing algorithms are kept in a similar manner as survival for the fittest fronted by Charles Darwin. According to researchers at Google, this Darwinian concept of neuroevolution can lead to the creation of an algorithm with 94% accuracy. Various studies saw an improvement in the algorithm’s image recognition skills.
The evolution of the machine learning algorithms, according to researchers, has led to the creation of more artificial intelligence systems that can work more like humans and without bias, that humans are known for. The mutation of algorithms will see the emergence of systems that can perform several tasks, including complex tasks that have for long relied on human expertise.
Despite the complex nature of the development of AI systems and advanced research that is needed to deliver highly efficient systems, Google’s AI mutation approach has shown to be a giant step towards making cutting-edge AI systems that can be helpful in the future. It is through such initiatives that we are likely to see systems that can outsmart humans in every aspect sooner rather than later.